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Abstract— In this paper, we address chaos control and synchronization problems of a chaotic system. Based on the Lyapunov stability 
theory and adaptive theory, the adaptive control law is derived such that the trajectory of the   chaotic system with unknown parameters 
can be globally stabilized to an unstable equilibrium point of the uncontrolled system. Meanwhile, an adaptive control approach is 
presented to the synchronization between two identical   chaotic systems. It is shown in detail that the chaos control and synchronization 
phenomena of this   3D chaotic system can be realized by designing suitable adaptive control laws. In addition, numerical examples are 
presented to illustrate the feasibility and effectiveness of the theoretical analysis 

Index Terms— Synchronizing, Genesio-Tesi  chaotic system , fractional-order system , Adaptive control 
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1 INTRODUCTION                                                                    
 

Chaotic behavior of dynamical systems can be utilized in 
many real-world applications such as circuit [1], mathematics 
[2], power systems [3], medicine [4], biology [5], chemical reac-
tors [6], and so on. Therefore chaos is one of the most interest-
ing topics which have attracted many researchers in all scien-
tific fields. Fractional calculus can date from three hundred 
years ago; however, its applications to physics and engineer-
ing have just started in the recent decades [7–10]. It was found 
that many systems in interdisciplinary fields can be elegantly 
modeled with the help of the fractional derivatives such as the 
nonlinear oscillation of earthquakes [11], viscoelastic systems 
[12], diffusion waves [13], electromagnetism [14], mechanics 
[15], and so on. Recently, the control and synchronization of 
the fractional-order chaotic systems has been one of the most 
interesting topics, and many researchers have made great con-
tributions. For example, in [16], chaos synchronization of the 
fractional-order unified systems is theoretically and numeri-
cally studied using the one-way coupling method. In [17], 
chaos synchronizations of two uncoupled fractional-order 
chaotic modified Duffing systems are obtained. A controller 
based on active sliding mode theory to synchronize fractional-
order chaotic systems in master–slave structure was proposed 
in [18]. In [19], the fractional Routh–Hurwitz conditions are 
used to control chaos in the fractional-order modified auton-
omous vanderPol–Duffing system to its equilibria. In [20], an 
intelligent robust fractional surface sliding mode control for a 
nonlinear system is studied. In [21], a new fractional-order 

hyperchaotic system is proposed, and using the pole place-
ment technique, a nonlinear state observer is designed to syn-
chronize a class of nonlinear fractional-order systems. In [22], 
it concerns the existence of mild solutions for semilinear frac-
tional evolution equations and optimal controls in the α-norm. 
Three schemes are designed to achieve chaos synchronization 
of the fractional-order hyperchaotic system in [23]. In [24], the 
classical control theory to a fractional diffusion equation was 
applied in a bounded domain. In [25], the authors analyzed 
the chaotic behavior of the fractional-order modified coupled 
dynamos system concretely, and provided the conditions sup-
pressing chaos to unstable equilibrium points, then used the 
feedback control method to control chaos in the fractional-
order modified coupled dynamos system. In [26], the function 
projective synchronization between fractional-order chaotic 
systems was investigated. In [27], a simple but efficient meth-
od to control fractional-order chaotic systems is proposed us-
ing the generalized T-S fuzzy model and adaptive adjustment 
mechanism.  

2 FRACTIONAL-ORDER DERIVATIVE  
DEFINITION 

The differintegral operator, represented by 0Dt
q

, is a com-
bined differentiation-integration operator commonly used 
in fractional calculus and general calculus operator, includ-
ing fractional-order and integer is defined as: 
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There are several definitions of fractional derivatives [28]. 
The best-known one is the Riemann-Liouvile definition, 
which is given by 
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Where n is an integer such thatn − 1 < q < n,Γ(0) is the 
Gamma function. The geometric and physical interpreta-
tion of the fractional derivatives was given as follows 
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The Laplace transform of the Riemann-Liouville fractional 
derivative is 
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Where, L means Laplace transform, and s is a complex var-
iable. Upon considering the initial conditions to zero, this 
formula reduces to 
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The Caputo fractional derivative of order α of a continuous 
function f ∶  R+ → R is defined as follows 
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Thus, the fractional integral operator of order  can be rep-
resented by the transfer function H(s) = 1

sq
 in the frequency 

domain. 
The standard definition of fractional-order calculus does 
not allow direct implementation of the fractional operators 
in time-domain simulations. An efficient method to cir-
cumvent this problem is to approximate fractional opera-
tors by using standard integer-order operators. In Ref. [29], 
an effective algorithm is developed to approximate frac-
tional-order transfer functions, which has been adopted in 
[16] and has sufficient accuracy for time-domain imple-
mentations. In Table 1 of Ref [17], approximations for 1 sq�  
with  from 0.1 to 0.9 in step 0.1 were given with errors of 
approximately 2 dB. We will use the 1 s0.95�  approximation 
formula [30] in the following simulation examples. 
 

21 1.2831s 18.6004s 2.0833
.95 3 2s 1.2831s 18.4738s 2.6574s 0.003

+ +
≈

+ + +
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In the simulation of this paper, we use approximation 
method to solve the fractional-order differential equations. 
 
 

3 ADAPTIVE CONTROL OF THE   CHAOTIC 
SYSTEM 

 
The Genesio–Tesi chaotic system, proposed by Genesio and 
Tesi is one of paradigms of chaos since it captures many fea-
tures of chaotic systems. It includes a simple square part and 
three simple ordinary differential equations that depend on 
three positive real parameters .The dynamic equation of the 
system is as follows: 

;1 2

;2 3
2 ;3 1 2 3 1

qD x x

qD x x

qD x cx bx ax x

=

=

= − − − +

 (8)      

Where x1; x2; x3 are state variables, and a, b and c are the posi-
tive real constants satisfying ab<c. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.   Chaotic attractor of system (8) 
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In this section, synchronization between two identical new 
chaotic systems is achieved based on the Lyapunov stabil-
ity theory and the adaptive control theory. Suppose the 
drive and response systems are given respectively as fol-
lows 

;1 2

;2 3
2 ;3 1 2 3 1
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=

=
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1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

= −

= −

= −

 (11) 

The error dynamic is described by 
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Then, the time derivative of the Lyapunov function be-
comes 
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2
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Calculating the time derivative of the Lyapunov function 
(13) along the trajectory of system (12) yields 
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If we choose the following adaptive control law 
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Then, the time derivative of the Lyapunov function be-
comes 

2 2 2
1 2 2 3 3* 1 * * 0V A e A e A e= − − − < (16) 

4 SIMULATION RESULT 
For numerical simulation, time step size 0.001. The initial val-
ues of the drive system (8) and the response system (9) are 
taken as x1(0) = 1, x2 (0) = 1 and x3(0) = 1 and y1(0) = 0.5, y2(0) 
= 0.5, y3(0) = 0.5, respectively. Order of chaotic systems is 
(q=0.95) and a=1.2;b=2.92;c=6; 
. Are chosen as (A1, A2, A3) = (10,10 ,10) respectively 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Synchronization performance of fractional-order 

5 CONCLUSIONS 
We investigate chaos synchronization of a fractional order 
chaotic system via adaptive control method. Based on the 
Lyapunov stability theory and the adaptive control theory, 
this fractional order chaotic system is suppressed to its unsta-
ble equilibrium. In addition, an adaptive control law and a 
parameter estimation update law are proposed to achieve syn-
chronization between two identical fractional order chaotic 
systems. 
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